101 research outputs found

    Towards Understanding Spontaneous Speech: Word Accuracy vs. Concept Accuracy

    Full text link
    In this paper we describe an approach to automatic evaluation of both the speech recognition and understanding capabilities of a spoken dialogue system for train time table information. We use word accuracy for recognition and concept accuracy for understanding performance judgement. Both measures are calculated by comparing these modules' output with a correct reference answer. We report evaluation results for a spontaneous speech corpus with about 10000 utterances. We observed a nearly linear relationship between word accuracy and concept accuracy.Comment: 4 pages PS, Latex2e source importing 2 eps figures, uses icslp.cls, caption.sty, psfig.sty; to appear in the Proceedings of the Fourth International Conference on Spoken Language Processing (ICSLP 96

    Krotov: A Python implementation of Krotov's method for quantum optimal control

    Get PDF
    We present a new open-source Python package, krotov, implementing the quantum optimal control method of that name. It allows to determine time-dependent external fields for a wide range of quantum control problems, including state-to-state transfer, quantum gate implementation and optimization towards an arbitrary perfect entangler. Krotov's method compares to other gradient-based optimization methods such as gradient-ascent and guarantees monotonic convergence for approximately time-continuous control fields. The user-friendly interface allows for combination with other Python packages, and thus high-level customization

    Controlling the transport of an ion: Classical and quantum mechanical solutions

    Full text link
    We investigate the performance of different control techniques for ion transport in state-of-the-art segmented miniaturized ion traps. We employ numerical optimization of classical trajectories and quantum wavepacket propagation as well as analytical solutions derived from invariant based inverse engineering and geometric optimal control. We find that accurate shuttling can be performed with operation times below the trap oscillation period. The maximum speed is limited by the maximum acceleration that can be exerted on the ion. When using controls obtained from classical dynamics for wavepacket propagation, wavepacket squeezing is the only quantum effect that comes into play for a large range of trapping parameters. We show that this can be corrected by a compensating force derived from invariant based inverse engineering, without a significant increase in the operation time

    Development of the vacuum power flow channel for the Mini-G

    Full text link
    Abstract not provide

    Flat plate FCG experimental system for material studies

    Full text link
    Abstract not provide

    The Sub-State Politics of Welfare in Italy: Assessing the Effect of Territorial Mobilization on the Development of Region-Specific Social Governance

    Get PDF
    This article demonstrates that the political mobilization of regional identities through the creation of regionalist parties has positively impacted on the development of region-specific models of welfare governance in Italy. This means that, in a decentralized country, the ‘centre-periphery’ cleavage may significantly influence the sub-state politics of welfare

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Primary staging and follow-up in melanoma patients – monocenter evaluation of methods, costs and patient survival

    Get PDF
    In a German cohort of 661 melanoma patients the performance, costs and survival benefits of staging methods (history and physical examination; chest X-ray; ultrasonography of the abdomen; high resolution sonography of the peripheral lymph nodes) were assessed at initial staging and during follow-up of stage I/II+III disease. At initial staging, 74% (23 out of 31) of synchronous metastases were first detected by physical examination followed by sonography of the lymph nodes revealing 16% (5 out of 31). Other imaging methods were less efficient (Chest X-ray: one out of 31; sonography of abdomen: two out of 31). Nearly 24% of all 127 first recurrences and 18% of 73 second recurrences developed in patients not participating in the follow-up programme. In follow-up patients detection of first or second recurrence were attributed to history and physical examination on a routine visit in 47 and 52% recurrences, respectively, and to routine imaging procedures in 21 and 17% of cases, respectively. Lymph node sonography was the most successful technical staging procedure indicating 13% of first relapses, but comprised 24% of total costs of follow-up in stage I/II. Routine imaging comprised nearly 50% of total costs for follow-up in stage I/II and in stage III. The mode of detecting a relapse (‘patient vs. doctor-diagnosed’ or ‘symptomatic vs asymptomatic’) did not significantly influence patients overall survival. Taken together, imaging procedures for routine follow-up in stage I/II and stage III melanoma patients were inefficient and not cost-efficient
    • …
    corecore